Investigation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

Energy Generation Conference
January 25, 2018

University of North Dakota
Microbeam Technologies Inc.
Barr Engineering
Pacific Northwest National Laboratory
MLJ Consulting
Phase 2 Project Team

Technical Team:
- University of North Dakota – Institute for Energy Studies
- Barr Engineering
- Pacific Northwest National Laboratory
- Microbeam Technologies Inc. (MTI)
- MLJ Consulting

Funding Support:
- U.S. Department of Energy – National Energy Technology Laboratory
- Lignite Research Program – North Dakota Industrial Commission
- Great River Energy
- North American Coal Corporation
- Great Northern Properties
- Minnkota Power Cooperative
- UND/ND University System

Advisory Support:
- North Dakota Geological Survey
Presentation Overview

- Rare Earth Elements Background
- Phase 1 Accomplishments
- Phase 2 Goals and Objectives
What are Rare Earth Elements?

- Not actually ‘rare’, just very evenly dispersed in earth’s crust
- Very few locations with economically mineable concentrations/forms
- LREE more abundant than HREE
Why are REEs Important?

• Unique properties makes them very useful in numerous applications

• Often termed “Chemical Vitamins” → low usage, high impact

• Essential materials for many high-value and critical applications

 ✓ Magnets, batteries, electronics, computers, auto vehicles, renewable energy, military defense...and many many others

✓ REEs make possible $7 Trillion in value-added products globally

✓ Unique properties prevent replacement by other materials
Why Research REEs from Coal?

- Several REEs identified as ‘critical’ – mostly the less common HREE
- China dominates global market - 83% of production in 2016
- **U.S. 100% import reliant**
- Chinese production rich in the HREE; U.S. deposits deficient
- Chinese reserves dwindling (HREE-rich ion adsorbed clays)
 - Current deposit for ~100% supply of HREE gone by 2025
 - Growth market sectors are dependent on HREEs – wind turbines, HEVs and many others
- **U.S. considers national security risk**
The U.S. May Be “Producing” Over 40,000 Tons of Rare Earth Elements Annually From Coal Mining

Ekmann, 2012
Phase 1 Goal, Objectives and Scope of Work

Overall Goal:
- Develop high performance, economically viable, and environmentally benign concentrating technologies for U.S. coal-related feedstocks

Objectives:
- Identify ND coal-related materials with REE content > 300 ppm
- Develop/test methods to concentrate REE to > 2wt%
- Techno-Economic Analysis and Process Design

Scope of Work
- Sampling
 - Field Samples: Coal, roof, floor, partings
 - Coal Creek Station: DryFining™, fly ash, bottom ash
- Characterization
 - REE abundance
 - Forms and modes of REE occurrence
- Laboratory-scale REE Concentration Testing
- Techno-Economic Analysis
- Bench-scale Design
ND Lignite Coal Zones & Industry Summary

- Host to world’s largest lignite deposit at ~350 billion tons
- ~25 billion tons recoverable
- Fort Union group – Paleocene age; 55-65 million years
- State heavily invested in mining/utilization and electric generation – 71% coal electricity in 2016
- Three major coal zones: active mines in Beulah-Zap and Hagel
- ~30 Million tons/yr
- > 4,000 MWe lignite-fired total capacity
REE Abundance Hagel Coal Zone

Collected Large Sample

good consistency:

410 to 530 ppm

range in several hundred lb sample

2/2/2018
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Ash Content (wt%)</th>
<th>Total REE, ppm</th>
<th>HREE/LREE</th>
<th>Total Critical REE, ppm</th>
<th>Total REE, ppm (ash basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A-2</td>
<td>36.3</td>
<td>642</td>
<td>0.28</td>
<td>191</td>
<td>1752</td>
</tr>
<tr>
<td>6A</td>
<td>20.1</td>
<td>564</td>
<td>0.35</td>
<td>189</td>
<td>2235</td>
</tr>
<tr>
<td>6A-1</td>
<td>75.5</td>
<td>449</td>
<td>0.28</td>
<td>129</td>
<td>587</td>
</tr>
<tr>
<td>3A</td>
<td>40.5</td>
<td>363</td>
<td>0.89</td>
<td>151</td>
<td>892</td>
</tr>
<tr>
<td>3C</td>
<td>60.9</td>
<td>322</td>
<td>0.43</td>
<td>104</td>
<td>525</td>
</tr>
<tr>
<td>6AA</td>
<td>47.0</td>
<td>212</td>
<td>2.06</td>
<td>94</td>
<td>449</td>
</tr>
<tr>
<td>7F</td>
<td>20.9</td>
<td>194</td>
<td>0.76</td>
<td>83</td>
<td>924</td>
</tr>
<tr>
<td>15G</td>
<td>32.2</td>
<td>177</td>
<td>0.45</td>
<td>54</td>
<td>541</td>
</tr>
<tr>
<td>10</td>
<td>26.2</td>
<td>146</td>
<td>0.69</td>
<td>61</td>
<td>554</td>
</tr>
<tr>
<td>5F</td>
<td>15.9</td>
<td>105</td>
<td>0.84</td>
<td>42</td>
<td>659</td>
</tr>
<tr>
<td>7E</td>
<td>11.0</td>
<td>76</td>
<td>2.19</td>
<td>42</td>
<td>681</td>
</tr>
<tr>
<td>9H</td>
<td>15.7</td>
<td>76</td>
<td>1.00</td>
<td>34</td>
<td>480</td>
</tr>
<tr>
<td>5E</td>
<td>10.2</td>
<td>47</td>
<td>1.30</td>
<td>21</td>
<td>462</td>
</tr>
</tbody>
</table>

![Graph showing dry whole coal/UCC ppm/ppm vs. Sc to Lu for samples 6A, 6A-2, 3A, and 6AA](image-url)
• Float-sink indicates enrichment in the low SG fractions.
• ~80% ash sample, but ~50% of REEs in the organic rich fractions.
• UND-developed sequential solvent extraction procedure indicates primarily organic association of the REEs: 85-95%.
• REE in coordination complexes much more prevalent than ion-exchangeable REE.
• Small fraction of residual – i.e. silicates/clays
Some Chemical and Physical Properties of Coals in the Various Rank Classes (Given, 1984)

<table>
<thead>
<tr>
<th></th>
<th>Lignite</th>
<th>Subbit.</th>
<th>High-Volatile Bituminous</th>
<th>Bituminous</th>
<th>Bituminous</th>
</tr>
</thead>
<tbody>
<tr>
<td>% C, mmf</td>
<td>65–72</td>
<td>72–76</td>
<td>76–78</td>
<td>78–80</td>
<td>80–87</td>
</tr>
<tr>
<td>% H</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>% O</td>
<td>30</td>
<td>18</td>
<td>13</td>
<td>10</td>
<td>10–4</td>
</tr>
<tr>
<td>% O as COOH</td>
<td>13–10</td>
<td>5–2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% as OH</td>
<td>15–10</td>
<td>12–10</td>
<td>9</td>
<td>?</td>
<td>7–3</td>
</tr>
<tr>
<td>Aromatic C atoms, % of total C</td>
<td>50</td>
<td>65</td>
<td>?</td>
<td>?</td>
<td>75</td>
</tr>
<tr>
<td>Av. no. benz. rings, layer</td>
<td>1–2</td>
<td>?</td>
<td>2–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflectance, % of vitrinite</td>
<td>0.2–0.3</td>
<td>0.3–0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6–1.0</td>
</tr>
<tr>
<td>Density, in helium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minimum</td>
</tr>
<tr>
<td>Total surface area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minimum</td>
</tr>
<tr>
<td>Plasticity and coke formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>only</td>
</tr>
<tr>
<td>Calorific value, moist. mmf, Btu/lb</td>
<td>7000</td>
<td>10,000</td>
<td>12,00</td>
<td>13,50</td>
<td>14,500</td>
</tr>
</tbody>
</table>
Initial tests used average REE concentration Hagel coal: ~42 ppm dry coal; 580 ppm ash

Several solvent types/concentrations screened for REE extraction ability from unprocessed lignite coal.

Solvent choices based on known organic REE associations.

Extraction ~90% with Solvent A, but large impurities extraction.

Solvent B best combination of high extraction and REE-selectivity – chosen for additional testing.

REE Extraction/Concentration Testing – Solvent Screening Tests

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ash Content (wt%)</th>
<th>% Ash Reduction</th>
<th>Total % REE Extracted</th>
<th>Wt% REE in Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unleached Coal</td>
<td>7.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solvent A</td>
<td>1.7</td>
<td>76.1</td>
<td>86.8</td>
<td>0.07</td>
</tr>
<tr>
<td>Solvent B</td>
<td>6.1</td>
<td>15.6</td>
<td>70.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Solvent C</td>
<td>3.1</td>
<td>56.4</td>
<td>65.6</td>
<td>0.06</td>
</tr>
</tbody>
</table>
REE Extraction/Concentration Testing – Harmon-Hansen vs. Hagel Coal

<table>
<thead>
<tr>
<th>Mass Balance Parameter</th>
<th>Hagel B</th>
<th>Harmon-Hansen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Ash Content (wt%)</td>
<td>7.2</td>
<td>25.6</td>
</tr>
<tr>
<td>% Ash Reduction</td>
<td>15.6</td>
<td>19.3</td>
</tr>
<tr>
<td>% REE Extracted</td>
<td>65.3</td>
<td>87.7</td>
</tr>
<tr>
<td>wt% REE in Solution</td>
<td>0.23</td>
<td>0.79</td>
</tr>
<tr>
<td>wt% Fe in Solution</td>
<td>16.0</td>
<td>68.8</td>
</tr>
<tr>
<td>wt% alkali/alkaline earth in Solution</td>
<td>69.6</td>
<td>13.6</td>
</tr>
</tbody>
</table>

- REE recovery higher with Harmon-Hansen, especially scandium
- Other high value elements also extracted: Co, Cu, Ga, Ge, Li, Ni, V, Zn, Mn
- Impurities also extracted: major components Fe, Ca, Mg, Na, K
REE Extraction/Concentration Testing – REE Extraction Kinetics

Hagel B Testing
- Plateau @ ~14 hrs
- HREE much faster
- LREE jump from 8-14hrs - possibly mineral form dissolution
- Slower scandium kinetics
- >50% HREE in 1 hr

Harmon-Hansen Testing
- Faster kinetics than Hagel B, especially scandium
- ~ 70% total REE extraction in 2 hr – little improvement through 14 hr
- HREE faster, but less pronounced than Hagel B
Many high value elements also fast kinetics

Many impurities significantly slower kinetics

Large improvement in REE-selectivity at short contact time

2wt% target potentially achievable with more optimization
REE Extraction/Concentration Testing – Modified Leaching Process

- Modified 2-step leaching process – Solvent D followed by Solvent B
- Achieved 2wt% REE concentration in single processing step, but only 36% REE recovery

<table>
<thead>
<tr>
<th>Product Solution</th>
<th>wt% REE</th>
<th>REE Recovery (whole coal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent D Leachate</td>
<td>2.05</td>
<td>36.0</td>
</tr>
<tr>
<td>Solvent B – 1hr Leachate</td>
<td>0.77</td>
<td>21.5</td>
</tr>
<tr>
<td>Solvent B – 4 hr Leachate</td>
<td>0.78</td>
<td>24.2</td>
</tr>
<tr>
<td>Mixture of Solvent D + 4hr</td>
<td>1.24</td>
<td>60.2</td>
</tr>
</tbody>
</table>
REE Extraction/Concentration Testing - Process Summary and Key Benefits

- REEs easily removed from the raw ND lignite coals due to weak organic bonding
- REE extraction performance summary – direct extraction from unprocessed ND lignite
 1. >2.0wt% REE concentration @ 36wt% REE recovery
 2. 1.36wt% REE concentration @ 68wt% REE recovery
 3. 0.8wt% REE concentration @ 86wt% REE recovery
- Much simpler extraction process than fly ash or mineral-bound REEs
- No physical beneficiation required – process similar to Chinese ion-adsorbed clays
 1. Solvent-based extraction of REEs from coarsely ground raw coal
 2. Hydrometallurgy techniques to concentrate REEs in the leachate
- Mild leaching process – no high temperatures or pressures; no concentrated acids/bases
- **Selective** REE extraction – only strips the organically associated REEs, leaving the mineral forms and organic matter behind – does not require digestion of entire ore/mineral
- Coal beneficiation process – reduces ash content and preserves organic content/structure; ~100% removal of ‘problem’ elements such as sodium
- Industrially proven processing methods – fast time to market and low scale-up risks
Phase 2 Plan
Phase 2 Project Objectives

The overall objective of this proposed Phase 2 project is to demonstrate at the bench scale a high performance, economically viable, and environmentally benign technology to recover rare earth elements (REE) from North Dakota (ND) lignite coal or lignite-related feed stocks.

- Based on the design of the bench-scale system developed in Phase 1, construct a bench-scale system with a REE-rich feedstock throughput of about 10 kg/hr to produce a mixed REE concentrate product of >2% by weight on a dry, elemental basis
- Obtain large samples (~2000 kg) of coal and associated sediments containing >300ppm total REE (TREE) dry whole sample basis for testing
- Conduct parametric testing of the bench-scale system in order to determine optimum conditions required to concentrate REE to >2%
- Conduct continuous testing of the bench-scale system at optimized conditions/configuration to produce a representative REE concentrate that is suitable for evaluation for further processing
- Provide splits of samples of the final product produced from the Phase 2 testing to NETL for independent analysis and verification of the quantity of REE present.
- Update the technical and economic analysis of the REE recovery process conducted in Phase 1 with the results of testing obtained in Phase 2.
- Identify opportunities for commercialization at existing mines/plants in ND and/or build the commercially feasible case for opening a new mine in an area with most favorable REE content
- Work with industry partners to develop a technology development and commercialization strategy
Phase 2 Scope of Work

• Task 1 – Project management and planning
• Task 2 – Provide split samples to NETL
• Task 3 – Bench-scale system procurement/construction
• Task 4 – Sampling, characterization and large sample collection
• Task 5 – Parametric testing – batch tests
• Task 6 – Bench-scale system modification for continuous tests
• Task 7 – Continuous testing – production tests
• Task 8 – Updated TEA and commercialization plan
• Task 9 – Final report
Phase 2 Technical Project Team

• **UND’s expertise:**
 - Lignite geology/geochemistry of REEs
 - Advanced analytical techniques involving REEs in coals
 - Chemical/process engineering design and demonstration

• **MTI’s expertise:**
 - Lignite/Low-rank coal inorganic/organic geochemistry
 - Process development/lignite industry experience
 - Business planning/commercialization

• **Barr Engineering’s expertise:**
 - Mineral processing, extractive metallurgy
 - Technology and economic feasibility assessment, commercial-scale plant design
 - Market analysis experience

• **PNNL’s expertise:**
 - REE/F-block chemistry and separations
 - Hydrometallurgy and trace metals recovery technology

• **MLJ Consulting’s expertise:**
 - ND lignite industry
 - Commercialization of lignite-related technologies

• **NDGS’ expertise:**
 - Lignite geology & extensive sample database on REEs
Acknowledgements

Project Team Members
• Daniel Laudal, UND (PI)
• Steve Benson, MTI
• Dan Palo, Barr Engineering
• Shane Addleman, PNNL
• Mike Jones, MLJ Consulting
• Ned Kruger, NDGS

Project Sponsor Representatives
• Chuck Miller, NETL Project Manager
• Mike Holmes and Mike Jones, LEC/NDIC
• Dennis James, NA Coal
• Charlie Bullinger and Sandra Broekema, GRE
• Craig Bleth, Minnkota Power Cooperative
• Kai Xia, Great Northern Properties
• Rick Tonder, North Dakota University System
DISCLAIMER
This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Contact Information

Dan Laudal
Manager: Major Projects
Institute for Energy Studies, University of North Dakota
Daniel.Laudal@engr.und.edu
701-777-3456

Steve Benson
President
Microbeam Technologies Inc
sbenson@microbeam.com
701-213-7070
Price of REE (Golev, 2014)

Table 4
The price dynamics for selected REO in 2007–2013 (US$/kg, FOB China).

Source: Lynas Corporation (2013), Metal-Pages (2013).

<table>
<thead>
<tr>
<th>Element</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanthanum oxide</td>
<td>3.4</td>
<td>8.7</td>
<td>4.9</td>
<td>22.4</td>
<td>104.1</td>
<td>25.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Cerium oxide</td>
<td>3.0</td>
<td>4.6</td>
<td>3.9</td>
<td>21.6</td>
<td>102.0</td>
<td>24.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Praseodymium oxide</td>
<td>29.1</td>
<td>29.5</td>
<td>18.0</td>
<td>48.0</td>
<td>197.3</td>
<td>121.0</td>
<td>92.3</td>
</tr>
<tr>
<td>Neodymium oxide</td>
<td>30.2</td>
<td>31.9</td>
<td>19.1</td>
<td>49.5</td>
<td>234.4</td>
<td>123.2</td>
<td>70.7</td>
</tr>
<tr>
<td>Samarium oxide</td>
<td>3.6</td>
<td>5.2</td>
<td>3.4</td>
<td>14.4</td>
<td>103.4</td>
<td>64.3</td>
<td>15.6</td>
</tr>
<tr>
<td>Europium oxide</td>
<td>323.9</td>
<td>481.9</td>
<td>492.9</td>
<td>559.8</td>
<td>2842.9</td>
<td>2484.8</td>
<td>1161.4</td>
</tr>
<tr>
<td>Terbium oxide</td>
<td>590.4</td>
<td>720.8</td>
<td>361.7</td>
<td>557.8</td>
<td>2334.2</td>
<td>2030.8</td>
<td>974.0</td>
</tr>
<tr>
<td>Dysprosium oxide</td>
<td>89.1</td>
<td>118.5</td>
<td>115.7</td>
<td>231.6</td>
<td>1449.8</td>
<td>1035.6</td>
<td>550.4</td>
</tr>
</tbody>
</table>